How to learn from the resilience of Human–Machine Systems? - Université Polytechnique des Hauts-de-France Access content directly
Journal Articles Engineering Applications of Artificial Intelligence Year : 2013

How to learn from the resilience of Human–Machine Systems?

Abstract

This paper proposes a functional architecture to learn from resilience. First, it defines the concept of resilience applied to Human–Machine System (HMS) in terms of safety management for perturbations and proposes some indicators to assess this resilience. Local and global indicators for evaluating human–machine resilience are used for several criteria. A multi-criteria resilience approach is then developed in order to monitor the evolution of local and global resilience. The resilience indicators are the possible inputs of a learning system that is capable of producing several outputs, such as predictions of the possible evolutions of the system's resilience and possible alternatives for human operators to control resilience. Our system has a feedback–feedforward architecture and is capable of learning from the resilience indicators. A practical example is explained in detail to illustrate the feasibility of such prediction.
Fichier principal
Vignette du fichier
EAAI-11-374R2_Ouedraogo et al.pdf (775 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03510010 , version 1 (25-04-2022)

Identifiers

Cite

Kiswendsida Abel Ouedraogo, Simon Enjalbert, Frédéric Vanderhaegen. How to learn from the resilience of Human–Machine Systems?. Engineering Applications of Artificial Intelligence, 2013, 26 (1), pp.24-34. ⟨10.1016/j.engappai.2012.03.007⟩. ⟨hal-03510010⟩
40 View
72 Download

Altmetric

Share

Gmail Facebook X LinkedIn More