Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Journal of Geometry and Physics Année : 2021

Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature

Résumé

In this paper, through making careful analysis of Gauss and Codazzi equations, we prove that four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature. Our result gives the positive answer to the conjecture proposed by Balmuş–Montaldo–Oniciuc in 2008 for four dimensional hypersurfaces.
Fichier principal
Vignette du fichier
2007.13589.pdf (190.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03722617 , version 1 (13-07-2022)

Identifiants

Citer

Zhida Guan, Haizhong Li, Luc Vrancken. Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature. Journal of Geometry and Physics, 2021, 160, pp.103984. ⟨10.1016/j.geomphys.2020.103984⟩. ⟨hal-03722617⟩
64 Consultations
42 Téléchargements

Altmetric

Partager

More