Minimal Lagrangian submanifolds of the complex hyperquadric - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Science China Mathematics Année : 2019

Minimal Lagrangian submanifolds of the complex hyperquadric

Haizhong Li
  • Fonction : Auteur
Hui Ma
  • Fonction : Auteur
Joeri van Der Veken
  • Fonction : Auteur
Xianfeng Wang
  • Fonction : Auteur

Résumé

We introduce a structural approach to study Lagrangian submanifolds of the complex hyperquadric in arbitrary dimension by using its family of non-integrable almost product structures. In particular, we define local angle functions encoding the geometry of the Lagrangian submanifold at hand. We prove that these functions are constant in the special case that the Lagrangian immersion is the Gauss map of an isoparametric hypersurface of a sphere and give the relation with the constant principal curvatures of the hypersurface. We also use our techniques to classify all minimal Lagrangian submanifolds of the complex hyperquadric which have constant sectional curvatures and all minimal Lagrangian submanifolds for which all local angle functions, respectively all but one, coincide.
Fichier principal
Vignette du fichier
LMVVW2019.pdf (473.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03723643 , version 1 (16-01-2024)

Identifiants

Citer

Haizhong Li, Hui Ma, Joeri van Der Veken, Luc Vrancken, Xianfeng Wang. Minimal Lagrangian submanifolds of the complex hyperquadric. Science China Mathematics, 2019, 63 (8), pp.1441-1462. ⟨10.1007/s11425-019-9551-2⟩. ⟨hal-03723643⟩
34 Consultations
9 Téléchargements

Altmetric

Partager

More