Cascade Takagi–Sugeno fuzzy observer design for nonlinear uncertain systems with unknown inputs: A sliding mode approach - Université Polytechnique des Hauts-de-France
Article Dans Une Revue International Journal of Robust and Nonlinear Control Année : 2022

Cascade Takagi–Sugeno fuzzy observer design for nonlinear uncertain systems with unknown inputs: A sliding mode approach

Résumé

This article investigates the design of Takagi–Sugeno (TS) fuzzy model-based observers for nonlinear systems with parametric uncertainties and unknown inputs. To address this challenging problem, two observers are constructed in cascade. Based on the sliding mode technique, the first observer allows to examine a new system whose both state and output equations are subject to uncertainties but without unknown inputs. The second Luenberger-type observer is designed for the new system where the effects of uncertainties on the estimation error can be canceled. The TS fuzzy observer design is recast as optimization problems under linear matrix inequalities, which can be effectively solved using convex optimization technique. The new cascade observer structure enables a simultaneous estimation of the system states, the unknown inputs and the uncertainties of the original nonlinear system. The effectiveness and advantage of the proposed estimation method is demonstrated via two numerical examples including a nonlinear vehicle application.

Domaines

Automatique
Fichier principal
Vignette du fichier
revision.pdf (710.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03930955 , version 1 (09-01-2023)

Identifiants

Citer

Cuong Nguyen, Anh‐tu Nguyen, Sebastien Delprat. Cascade Takagi–Sugeno fuzzy observer design for nonlinear uncertain systems with unknown inputs: A sliding mode approach. International Journal of Robust and Nonlinear Control, 2022, 33 (15), pp.9066-9083. ⟨10.1002/rnc.6371⟩. ⟨hal-03930955⟩
23 Consultations
63 Téléchargements

Altmetric

Partager

More