The BEM with graded meshes for the electric field integral equation on polyhedral surfaces - Archive ouverte HAL Access content directly
Journal Articles Numerische Mathematik Year : 2016

The BEM with graded meshes for the electric field integral equation on polyhedral surfaces

, (1)
1

Abstract

We consider the variational formulation of the electric field integral equation on a Lipschitz polyhedral surface \(\Gamma \). We study the Galerkin boundary element discretisations based on the lowest-order Raviart–Thomas surface elements on a sequence of anisotropic meshes algebraically graded towards the edges of \(\Gamma \). We establish quasi-optimal convergence of Galerkin solutions under a mild restriction on the strength of grading. The key ingredient of our convergence analysis are new componentwise stability properties of the Raviart–Thomas interpolant on anisotropic elements.
Fichier principal
Vignette du fichier
1504.02647.pdf (390.97 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03135588 , version 1 (05-07-2022)

Identifiers

Cite

A. Bespalov, Serge Nicaise. The BEM with graded meshes for the electric field integral equation on polyhedral surfaces. Numerische Mathematik, 2016, 132 (4), pp.631-655. ⟨10.1007/s00211-015-0736-3⟩. ⟨hal-03135588⟩
8 View
4 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More