Four-dimensional locally strongly convex homogeneous affine hypersurfaces - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Journal of Geometry Année : 2017

Four-dimensional locally strongly convex homogeneous affine hypersurfaces

Résumé

We study four-dimensional locally strongly convex, locally homogeneous, hypersurfaces whose affine shape operator has two distinct principal curvatures. In case that one of the eigenvalues has dimension 1 these hypersurfaces have been previously studied in Dillen and Vrancken (Math Z 212:61–72, 1993, J Math Soc Jpn 46:477–502, 1994) and Hu et al. (Differ Geom Appl 33:46–74, 2014) in which a classification of such submanifolds was obtained in dimension 4 and 5 under the additional assumption that the multiplicity of one of the eigenvalues is 1. In this paper we complete the classification in dimension 4 by considering the case that the multiplicity of both eigenvalues is 2.
Fichier principal
Vignette du fichier
Article%20Affine%20geometry%20Jour.Geom.pdf (354.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03146492 , version 1 (16-01-2024)

Identifiants

Citer

Abdelouahab Chikh Salah, Luc Vrancken. Four-dimensional locally strongly convex homogeneous affine hypersurfaces. Journal of Geometry, 2017, 108 (1), pp.119-147. ⟨10.1007/s00022-016-0330-6⟩. ⟨hal-03146492⟩
239 Consultations
10 Téléchargements

Altmetric

Partager

More