Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Materials Année : 2021

Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms

Résumé

High–speed nanoindentation rapidly generates large datasets, opening the door for advanced data analysis methods such as the resources available in artificial intelligence. The present study addresses the problem of differentiating load–displacement curves presenting pop-in, slope changes, or instabilities from curves exhibiting a typical loading path in large nanoindentation datasets. Classification of the curves was achieved with a deep learning model, specifically, a convolutional neural network (CNN) model implemented in Python using TensorFlow and Keras libraries. Load–displacement curves (with pop-in and without pop-in) from various materials were input to train and validate the model. The curves were converted into square matrices (50 × 50) and then used as inputs for the CNN model. The model successfully differentiated between pop-in and non-pop-in curves with approximately 93% accuracy in the training and validation datasets, indicating that the risk of overfitting the model was negligible. These results confirmed that artificial intelligence and computer vision models represent a powerful tool for analyzing nanoindentation data.
Fichier principal
Vignette du fichier
materials-14-07027-v2.pdf (3.59 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-03534139 , version 1 (25-04-2022)

Licence

Identifiants

Citer

Stephania Kossman, Maxence Bigerelle. Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms. Materials, 2021, 14 (22), pp.7027. ⟨10.3390/ma14227027⟩. ⟨hal-03534139⟩
47 Consultations
42 Téléchargements

Altmetric

Partager

More