Fault estimation for nonlinear parameter-varying time-delayed systems - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Applied Mathematics and Computation Année : 2024

Fault estimation for nonlinear parameter-varying time-delayed systems

Résumé

A fault estimation method for a class of nonlinear parameter-varying systems subject to time-varying delay and unmeasured nonlinearities is presented. The unmeasured time-varying parameters are effectively handled using a sector-based condition approach. A gain-scheduling intermediate estimator is proposed to simultaneously estimate the system state and the unknown faults. Design conditions are derived based on Lyapunov–Krasovskii functional and integral inequality techniques. These conditions, expressed as linear matrix inequalities, ensure that the estimation error dynamics are input-to-state stable with respect to the time-derivative of the faults. Moreover, it is demonstrated that for the case of piecewise constant faults, the estimation error dynamics are exponentially stable. As a corollary result, conditions are also presented to design gain-scheduling intermediate estimators for nonlinear parameter-varying systems without time-varying delays. Three physically motivated examples are provided to demonstrate the effectiveness and practical interests of the proposed nonlinear estimation method.
Fichier principal
Vignette du fichier
__AMC_D_23_00716_R2___Fault_estimation_for_nonlinear_parameter_varying_time_delay_systems3.pdf (1.17 Mo) Télécharger le fichier
__AMC_D_23_00716_R2___Fault_estimation_for_nonlinear_parameter_varying_time_delay_systems3 (1).pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04278785 , version 1 (25-11-2023)

Identifiants

Citer

Márcia L.C. Peixoto, Pedro H.S. Coutinho, Tran Anh-Tu Nguyen, Thierry-Marie Guerra, Reinaldo Palhares. Fault estimation for nonlinear parameter-varying time-delayed systems. Applied Mathematics and Computation, 2024, 465, pp.128405. ⟨10.1016/j.amc.2023.128405⟩. ⟨hal-04278785⟩
49 Consultations
206 Téléchargements

Altmetric

Partager

More