Convex Stability Analysis of Mamdani-Like Fuzzy Systems With Singleton Consequents - Université Polytechnique des Hauts-de-France
Article Dans Une Revue IEEE Transactions on Fuzzy Systems Année : 2023

Convex Stability Analysis of Mamdani-Like Fuzzy Systems With Singleton Consequents

Résumé

We study the stability of a class of discrete-time fuzzy systems with singleton consequents, called Mamdani-like fuzzy systems. The parametric expressions, specific to this class of fuzzy systems, are leveraged to derive stability analysis conditions via Finsler's lemma and Lyapunov stability tools. This allows avoiding the major challenge in dealing with high-dimensional cases, encountered in the related literature when using the classical state-space representation. Moreover, the information of the piecewise region partition can be fully taken into account in the stability analysis with the well-known S− procedure to further reduce the stability conservatism. The stability of Mamdani-like fuzzy systems can be checked by solving a set of linear matrix inequalities, that is numerically tractable with a suitable semidefinite programming software. Several numerical and physically motivated examples are provided to illustrate the effectiveness of the proposed stability analysis results.

Domaines

Automatique
Fichier principal
Vignette du fichier
InthememoryofAmineDehak.pdf (1.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04278819 , version 1 (25-11-2023)

Identifiants

Citer

Tran Anh-Tu Nguyen, Amine Dehak, Thierry-Marie Guerra, Michio Sugeno. Convex Stability Analysis of Mamdani-Like Fuzzy Systems With Singleton Consequents. IEEE Transactions on Fuzzy Systems, 2023, 31 (11), pp.3787-3798. ⟨10.1109/TFUZZ.2023.3267849⟩. ⟨hal-04278819⟩
20 Consultations
76 Téléchargements

Altmetric

Partager

More