Leveraging Efficient Models for Recognizing Drivers' Facial Expressions - Université Polytechnique des Hauts-de-France
Poster Année : 2024

Leveraging Efficient Models for Recognizing Drivers' Facial Expressions

Résumé

Our new approach, ShuffViT-DFER, combines lightweight CNN and vision transformer models for efficient and accurate real-time driver facial expression recognition. By merging their features effectively, we outperform existing methods on benchmark datasets like KMU-FED and KDEF.
Fichier principal
Vignette du fichier
PosterIbtissam_MdC2024.pdf (1.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04546700 , version 1 (15-04-2024)

Identifiants

  • HAL Id : hal-04546700 , version 1

Citer

Ibtissam Saadi, Douglas W Cunningham, Abdelmalik Taleb-Ahmed, Abdenour Hadid, Yassin El Hillali. Leveraging Efficient Models for Recognizing Drivers' Facial Expressions. Mardi des chercheurs 2024, Mar 2024, mons, Belgium. ⟨hal-04546700⟩
58 Consultations
29 Téléchargements

Partager

More